<name>

Class: Honors Geometry

Date: 9/14/06

Topic: Lesson 4-7 (Using Corresponding Parts of Congruent Triangles)

Overlapped Δs

- 1. Separate, redraw and relabeled
- 2. Common side or \angle is \cong to itself by reflex. POC.
- 3. Prove 1 pair of $\Delta s \cong \&$ use CPCTC to prove another pair \cong

Examples

Pg 227

Separate & redraw. Identify any common \angle 's or sides.

7. Δ*ABE* & Δ*BAC*

Only \overline{AB} is common to both.

8. $\Delta JKL \& \Delta MLK$

Only \overline{KL} is common to both.

<name>

Class: Honors Geometry

Date: 9/14/06

Topic: Lesson 4-7 (Using Corresponding Parts of Congruent Triangles)

Pg 225, Check Understanding 2

Plan and write a proof.

Given: $\triangle ACD \cong \triangle BDC$

Prove: $\overline{CE} \cong \overline{DE}$

Plan:

- 1) Separate, redraw & label the $\cong \Delta s$.
- 2) Id corr. (& \cong) parts.

$$\angle CAD \cong \angle DBC$$
, $\angle ADC \cong \angle BCD$,

$$\angle ACD \cong \angle BDC$$
,

$$\overline{AC} \cong \overline{BD}$$
, $\overline{AD} \cong \overline{BC}$, $\overline{CD} \cong \overline{CD}$

- 3) Next notice $\overline{CE} \& \overline{DE}$ are sides of $\triangle CED$... redraw & label $\triangle CED$.
 - 4) Notice $\angle C$ (of $\triangle CED$) is part of $\angle RCD$ and that $\angle D$ (of $\triangle CED$) is part of $\angle ADC$ so $\angle C = \angle D$ which

makes $\triangle CED$ an isosceles triangle.

$$\angle ADC \cong \angle BCD$$
 CPCTC

Pt E is on
$$\overline{AD} \& \overline{BC}$$
 Given

$$\overline{CE} \cong \overline{DE}$$
 If $2 \angle s \cong$ then opposite sides are \cong .

Given: $\overline{XW} \cong \overline{YZ}$

$$\angle$$
's

Prove: $\Delta XPW \cong \Delta YPZ$

and...

Plan: Separate, redraw & label:

...goal
$$\Delta s$$
:

Notice vert
$$\angle$$
's $\angle XPW \& \angle YPZ$ X

...& other helpful Δ pairs:

Notice
$$\Delta XWZ \cong \Delta YZW$$
 (SAS:

$$\overline{WZ} \cong \overline{WZ}$$
)

We can use CPCTC to say $\angle WXZ \cong \angle WYZ$

Proof: $\overline{XW} \cong \overline{YZ}$ Given $\angle XWZ \cong \angle YZW$ All rt. $\angle 's \cong$

<name>

Class: Honors Geometry

Date: 9/14/06

Topic: Lesson 4-7 (Using Corresponding Parts of Congruent Triangles)

$\overline{WZ} \cong \overline{WZ}$	Reflexive POC
$\Delta XWZ \cong \Delta YZW$	SAS
$\angle WXZ \cong \angle ZYW$	CPCTC
$\angle XPW \cong \angle YPZ$	Vert. \angle 's \cong
$\overline{XW} \cong \overline{YZ}$	Given
$\Delta XPW \cong \Delta YPZ$	AAS

Not in the book

Given: $\overline{CA} \cong \overline{CE} \& \overline{BA} \cong \overline{DE}$

Prove: $\angle CBE \cong \angle CDA$

Plan: Separate, redraw & label:

...goal triangles:

Shared $\angle C$ & given $\overline{CA} \cong \overline{CE}$

Also notice \overline{BA} is part of \overline{CA} A and \overline{DE} is part of \overline{CE}

Proof: CA = CB + BA $\angle Add. Post.$

CE = CD + DE \angle Add. Post.

CA = CE Given

CB + BA = CD + DE Subst POE

BA = DE Given

CB + DE = CD + DE Subst POE

 $CB = CD, \overline{CB} \cong \overline{CD}$ Subtr POE

 $\angle C \cong \angle C$ Reflexive POC

 $CA \cong CE$ Given $\Delta CDA \cong \Delta CBE$ SAS

 $\angle CDA \cong \angle CBE$ CPCTC